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1. Introduction

A stationary stochastic process that serves as a useful model for
time series analysis is the autoregressive process with moving average

residuals {y_} which satisfies
t

(1.1) E B. ¥ = % O, V. . >
oo °© t-s j=0 J t=)

t=..., -1, 0, 1, ... , where the sequence {vf} consists of indepen-
dently identically distributed random variables. [See Section 5.8 of T.
W. Anderson (197la)and Box and Jenkins (1970).] To avoid indeterminacy

BO = ao =1. (An:alternative of specifying the variance of v, to be 1

and leaving ao as a free parameter is considered also.) The mean of
v, is independent of t and is taken to be O for convenience. (Mod-
ifications necessary to account for an arbitrary mean are also discussed.)

When gyt = 0 , the stationarity implies

(1.2) éfyt v, = olt-s) ,

dependent only on the difference of the indices.

We shall assume that the vi's are normally distributed, that is,

that the process is Gaussian. Then the model is completely specified by

the coefficients in (1.1) and the variance of v, » S8y ol .

The statistical problem treated here is to estimate Bl, 200 5 Bp .
al’ HO0 4 aq , and 02 on the basis of a set of observations at T

successive time points, Iis =+ 5 ¥y



If y = (yl, cee yT)‘ , the density of the multivariate normal

~

distribution N(0,Z) of y is

-1
1 —3y 'L
(1.3) —I L ¢ vy )
(em)= [z|™
where
(1.4) Sytys=cts s t,s=1, ... , T,

is the t,s—th element of X. If the distribution is that defined by (1.1),
then (1.4) is (1.2); the covariances are functions of the parameters
2

, B, Ops ove aq , and O .

Bl’ . o

The method of maximum likelihood can be considered, but in general an
explicit solution cannot be found. The approach of this paper is to modify
the model slightly so that the derivatives of the likelihood function set
equal to 0 yield relatively simple equations. Since these equations are
nonlinear, an iterative procedure is proposed that yields asymptotically
efficient estimates at the first step (as T » « ),

The estimation problems for the pure autoregressive process and pure
moving average process as well as the general mixed model are set up in
terms of more general multivariate models. The case of N observations
on the vector y is included. This work is a continuation of earlier re-
search on covariance matrices with linear structure by T. W. Anderson (1969),
(1970), (19T71b), and (1973). The iterative procedures are extensions of that
presented in the last paper, which is essentially the method of scoring (as

pointed out to me by J. N. K. Rao).



Durbin (1959), (1960) and A. M. Walker (1961), (1962) have proposed
estimates, but they are not asymptotically efficient (as' T - «). Box
and Jenkins (1970) have suggested maximizing the likelihood function by
numerical means.

The covariance sequence (1.2) of a stationary process has a spectral
representation. In the case of an absolutely continuous spectral distri-

bution fumetion
[

(1.5) G(h)=[ £(A) cos A h dax , h=0,+1, ....
-

The spectral density f(A) may be determined by

(1.6) £(2) = &= § o(n) cos an

hi=wco
when the series on the right-hand side converges. In the case of model (1.1)

the spectral density is

(1.7) £(a) = & . =2 i

Clevenson (1970) and Parzen (1971) and Hannan (1969) have proposed estimation
methods based on the sample spectral density (the so-called periodogram). The
relationship between these methods and the ones presented in this paper will

be explicated in a later paper.

If we let (1.1) be U, o the spectral density of the stationsry process

{ut} is



2 q q
(1.8) £ =& 7 o N ] o oM
j:o J J=O J
q .
=1 iih
= on _z Uu(h) € s
h=-q
where
. 2 q—%h]
(1.9) o (h) =0 NN h=0,+, ... , +q ,
k=0
are the nonzero covariancesof {ut} . The parameters Ops *ve aq , and
o° can be replaced by Ou(O), Ou(l), cee s Ou(q) . We shall assume the
roots of
(1.10) M(z) = % a, 237
j=0
are less than 1 1in absolute value. Then given ou(O), cu(l), cee cu(q) #0
X%z_q Ou(h) 22 can be factored uniquely into M(z)M(z_l), thus, defining
ai,‘... . aq , and 02_[See T. W. Anderson (19T7la) and (1971b) for details. ]
stimation of the pure moving average model in terms of o(0), o(1), ... , o(q)

was treated by T. W. Anderson (1971b), (1973).



2. Estimation of Coefficients of Linear Transformations to Approximate
Autoregressive Processes

2.1 A General Linear Transformstion. Suppose y is a T-component

random vector defined by

D
(2.1) ) B K, y=v,

020 =R b
where Ko, Kl’ 00 4 Kp are p + 1 known linearly independent T X T
matrices, Bo =1 and Bl,'... - Bp are p parameters such that

E=O BQ gz is nonsingular; we assume that there is at least cne such .
set. Suppose v is a T-component random variable with mean vector

%'v = 0 and covariance matrix

(2.2) ‘ Flv) = Evv' = d‘aé
Then
% -1
(2.3) y = B, X v
" 020 L2 <8 <

"

has mean vector ‘ﬁy‘ 0 and covariance matrix

e G = fyyr = g |7 [ F '-l=02.§ B BK'K)—l
Y= Py Lo B ke Lo BB | g oo Tk Pa ok
with inverse
es) Elp-L Y ex Ve F gk
R = I T T B
Let Yyo o0 o Ty be N observations on Yo and let L denote the

likelihood function when y has a normal distribution. Then

-~



(2.6) 1%logL=—Tlog2Tr—Tlog02+2log!z BKzl
) [§ e b
- =5 ¥ B
No° o=l \k=0 b % Yo R -
= _T log 2n - T log o° + 2 log | 2 By ~2|
}oa s
2 kz_Bszk
where
N
1
(2.7) o N 2 :ZOLX'(;L’
o=1

and tr denotegthe trace of the matrix that follows. To find the partial

derivatives of (2.6) with respect to Bis +vv Bp we use the results
dlogla] 1 34|
ey I VY T

08,
§ cof a _s_leL_J_ ’
1 »J=1
. 04, .
- § Ji ij
9j=l e —
e a1
R TR N

(The cofactor of aij in A 1is denoted by cof aij') Then

3 2 i
(2.9) == T log L =2 tr § B K
58, N Lo Bl | K

5 N

-= 1 ¥ ) B Kt K 7

No o=1 k=0



-] P
2
= 2 ty 8 K, - =tr 'K C,
PR IR S
L =1, < s P
(2.10) 2 210g L= -+ Sty § B, B, K. K, C
. - = - Xk Ke Kp ©
302N 02 o k,2=0 % %
If N=1 and y, =y , the derivatives (2.9) are
SN LIS SR
(2.11) cNes By K Ko =5 1 B3 KK y.a=1,..0p
k=0 o k=0
and (2.10) is
Ll :
(2.12) = 2+—£— _ Bk B,Q,X Kk 2’
o o k,2=0

The maximum likelihood estimates may be defined by setting the derivatives

equal to 0. [By the argument used in T. W. Anderson (1970) it follows that
there is at least one relative maximum defined by the derivative equatioms.]
The derivative equations are

A -1

b
(2.13) tr B =
kzo P B

i o~

tr ke X C

a> ll——'
)

k=0

E . A
(2.14) =3 ) B B trxk c.
k,2=0 kR~

g K=

We can develop these equations in an alternative way by letting

(2.15) K Yy, (k) k=0,1, ... ,p, =1, ... , N
Then
2 2
(2.16) Flog L=-Tlog2r - T log ¢ + 2 log | 2 B, K,
N e '
a1 ey ﬁ
T2 Z X B Yo By ¥ Lo
No a=1 '

- T log 2r = T log 0%+ 2 log]| § B, Kzl - lE'B' M B,
. 2=0 ~ o -~



where
(2.17) B =
A
(1) _(0)
N ¥ y
(2.18) u = %. Z = ~O
o=1
(p)* _(0)
~0l XOL

The partial derivatives of (2/N) log L set equal to O

of the elements of @ as

AU A
(1) (1) (1) _(p)

I i Vo To
(p)' (1) (p) _(p)

T 7 0% T Lo To

can be written in terms

A _l l Al
(2.19) (5 § B Ko [===58 M,
Lo b Bl % i)
A Al PN
(2.20) 02 = %—tr B MB ;

the left-hand side of (2.19) denotes a row vector with the f-th component

given explicitly.

If N >1 and gy'= U , where . 1s an arbitrary vector, then the

sample mean

(2.21) g

is the maximum likelihood estimate

(2.13) and (2.1L), ¢

~

A l N
(2.22) C=5 1
~ o=1

In some models one wants ‘ﬁyd = U 3 that is,

of Uy , and in the likelihood equations

~

should be replaced by

Vo) g 1)

gy = He , where
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e=(1,1, ... , 1)'. Then 2/N times the logarithm of the likelihood

function is (2.6) with C replaced by

x 1 ¥
- = G _ !
(2.23) Co=F L Gymwe) gy -ue)
a=1
The derivative of 2/N times the logarithm of the likelihood with

respect to u is

N N
9 2 2
(2.24) = Z10gL=-e' § B, K K E (y —ue)
oM No© "~ k,%=0 L o=l ¢
If € 1is a characteristic vector of KO, Kl’ S06 o Kp , then
(2.25) U=t ) ey
M g=p ~ ™o

and in the other derivative equations C is replaced by

4

M

N
(2.26) Tl (g, -he) g -ne )
a=1 ~

If € 1is not a characteristic vector of K., K., ... K , then usually
~ ~0* 1 P o)

(2.25) will not be the maximum likelihood estimate of u .
The second derivatives of (2/N) log L defined by (2.6) are

5 .

b -1 P -1
(2.27) SEEESE;- %—log L = =2 tr (kZo Bk %k) %j kZO Bk 5&_} %2
- 55- tr %3 El 9 ) Js &1, ... ., D ,
(2.28)——32—-—910gL=2tr§sK'Kc j=1 D
3, 20° " - T
(2.29) 2 Elog L = T2 lf '
: (322 1€ F- 8 " By By Kx Ky C -

The elements of the information matrix are N times



ﬁ 32 1 e -1 1) -1
(2.30) ~£—=—%— =T log L = t: z ) K, 2 K
F3B, 3B, W Lo B Ky <IN B Ky =3
HWARS ]
+ tr B X! K K § B K s
k=0 © * ~ ~lzo Kok
Ja’Q‘= 1l s Po
2 P -1
5 1 1
(2.31) -;}——————— = log L=wss tr| ) K., 3=1, v 5, D,
26, o> U 2 Tl e
o
(2.32) jgf__ﬁé__ %~log L= -E%T'
(307) 20

As N =+ o , the normalized maximum likelihood estimates have a limiting
normal distribution with covariance matrix whose inverse has elements given

by (2.30), (2.31), and (2.32).

2.2 Autoregressive Process Approximated by a Linear Transformation,

The autoregressive process {yt} is (1.1) for O = ... =0 = o,
that is,
P

(2.33) SZO By Vig = Vi o
t=...,-1,0,1, ... . Let y= (¥1=""¥T)" Then the distribution of
Iis +oe s Yo is approximated by the distribution of Y defined by (2.1) when
Kg = Eg, g=0, 1, - , P , Where

0 0 0 0 0

1 0 0 0 0

0 1 0 : 0 0
(2.34) L=} . : .

O



Then
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
- .
(2.35) 17 = :
0 0 0

o
o
o o O
o

11

0 0

. 6] 0
. 0 0
6] 6]

. 0
0

. 1 0

In general 1.8 has all O's except for 1's

diagonal. We suppose p+ 1 < T. Note that

(2.36)
(2.37)

In this case

(2.38) R =
kgo kS

which is triangular with 0's

18 1f = 18

2

=0,
0 0
1 0
Bp-l 39—2
Bp Bp—l
0 0

above the main

o O O O

o O

g units below the main

g, h=0, 1, ... ,
g=T, T+1, ... .

0 0 0
0 0 0
0 6] 0
1 0 0
Bl 1 0
0 0 1

diagonal and has determinant 1.
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The components of (2.1) are

_ it
(2.40) ) By Vg = Vg o =1, cev 5 D
8=0
) P
(2.41) SZO B, ¥pg = Vg b7DHL, oo s T

The equation 2.41) agrees with the autoregressive process (2.33), but the
equation {2.&0) is such that the sequence Yis s+ 5 ¥p does not start out

as a stationary process. An alternative way of considering the equation

(2.40) is that (2.41) holds with Yo = V.1 = . y—(p—l) 0
In this model we are often interested in N =1 and ¥ =Y. Then
/0
k k 0
(2.42) X( ) < K y=Ly =‘ 5 k=0, 1, ... , T-1 ,
71
Ypx
where there are k 0's, and
(2.143) ¥y =0, k=T, T+, ...

Since p—O ﬁk Ek is triangular with O0's above the main diagonal, then
(Ekfo k ) - is triangular with O's above the main diagonal, and the
determinant of 2P=0 By Lk is 1. [The diagonal terms of (2 B L )—l 2

are 0, %=1, ... , p .] Then the derivative of 2/N times the logarithm

of the determinant with respect to B2 is '

-1 :
(2.4k) 382 log l § B L ' = tr (kgo Bk Ek ) Ez =0 fL£=1, ...
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The derivative equations (2.13) can be written in this case as

b ' '

i k 2 0
(2.45) ) y( ) y( N v (0) y(z) 3 =1, . 4P .

k ~ ~ ~ ~

k=1
In components these afe
~ § §
(2.16) § Ve g ¥ = - Ve Ypop o 2=1, «e. 5 P »
W B Ve Voo T L Ve Yoy

where Yo =¥_q3 = -0 = y—(p—l) = 0 . These are the usual maximum likelihood

estimates of B., ... , Bp for initial values y =y 5 = ... = Vo (p-1) = 0

or the "least squares estimates" since they minimize

T

2
(2.47) 713 B 7,

[See T. W. Anderson (1971), Sections 2.2 and 5.4, for example. ]

Let
1 T-h
(2.48) ¢y, = T .2 Vi Yigp o h=0, 1, ... , T-1 ,
i=1
The right-hand side of (2.46) is _TCQ . The sum
) T
(2.49) LYk Vo g

t=1

differs from Tc by omission of

|2
T—| k-2 |
(2.50)

y, ¥ .
+£=T-max (k,2)+1 t t+|k_2l

These terms can be added to the coefficients so as to make the equations

agree with

(2.51) ) B oc .=-cp, £f=1, ... ,D.



1k

[See T. W. Anderson (197la),Sec. 5.6, for example.] Then the estimates
derived from (2.51) are the coefficients of a stationary process. [See
Anderson (1971c), for example.] If we let

0

(3.52) (5) | ¢ |, k=0, 1, ... , D,

12
|

where the first k components are O and the last p-k components are

0 , then (2.51) can be written

(2.53) T A AR L A LG R TR

k=1 K

R
2

In this case of Kk = gk the elements of the information matrix

are N times

: 2 TRV ot S . -1
(2.54) "ﬁfﬁfrégg—' T log L = tr § B '3t _§ Bk.Lk ,
3 °Fe k=0 ~ ~ 7 k=0 ~
J, &=, ... 5 D,
2
(2-55)—g—""‘§—2 %logL=0, =1, v 5D,
asj 30

and (2.32).

-----
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It is of interest to compare the covariance matrix of y defined by

~

(2.1) with that of T terms from the stationary process defined by (2.33).

For p=1 and Bl=5 the covariance matrix of the stationary process 1s

(/ 1 ! (- B)T &
» -8 1 -B (- f))T -2
(2.56) = g? -8 1 (-8)""
1-8

\( B)T“l (-p)f % (-p)T3 1

and
1-8° -8(1-6%) 82 (1-g2) (-8)T L (1-82)

. ~B(1-8%) 1-g* -8(1-8") e (=)™ B(gh

(2.57) Giy) v BILAC S ~8(1-5") 1-6° o )3
)T a-g?) (T Raogh)  (wp)T3gd) ... 1-g°T

For a stationary process |B| < 1 , and hence the 1i,j-th element of jz(y) is

close to the i,j-th element of (2.56) if i and J are large.
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3. Estimation of Coefficients of Linear Transformationgto Approximate

Moving Average Processes

3.1 A General Linear Transformation. Another model is defined by

(3.1) y=§ v,
y= ol % T
where JO’ Jl, 5o o Jq are q *+ 1 known linearly independent T X T
: - q
matrices, ao =1, and al’ 700 5 aq are g parameters such that 22=O al {2

is nonsingular; we assume that there is at least one such set. Suppose v

~

rd
is a random vector with mean vector ?v-= 0 and covariance matrix A;vv' =0

Then the mean vector of y 1is éy = 0 and the covariance matrix is

~ ~

(3.2) Cy) = Syy' = & Ozl o, 3, I = o %oJ) OZl-ocJ'
)= ey km:O"’k % ke k Sk [\ & ~R

If L denotes the likelihood function, then

q
2 2
(3.3) T log L =-T log 21 - T log ¢° .- 2 log lkZO ak.{kl
N qa -1{ q -1
1
S Yyl e ) )y
vo? om1 ~ \iko & H & %] o

q
=—Tlog2ﬂ—T10g02—210€lzO‘KJKI
k=0 -

1 -1 -1
- =5 tr % o, J! % o, J C
2 Lo Tk Sk (z=o ) Nz) -

We use the result that

-1 -1] 9 -1

A 2 = - ]

(3.4) T 2 s A)A

which follows from differentiating A A_l = 1 . The partial derivatives of

(2/N) log L are

2

I



5 % -1 -1 q -1
+ = tr 0. J c % oy I} Jtt ) e, J! ,
2 PR 2% I (2=0 2 8 ~\ gEg & -

J=l, «..h @

-1 q -1
3 2 g 1 :
(3.6) —= =1log L = - ==+ tr % J! ) Y oa, d c .
22 1§ 2" & Lo T Nk ko BN <

Q

The likelihood equations can be written [ with the second term on the right-hand

side of (3.5) transposed]

% & \_l 1 g . |- q il -1
: t o I I =3t J , J C % 5, g0
(3.7) 2 Lo % ~k} Iy = r( QZO o Jol 3, 220 a, I C &, T4 ) ,

=i, ... , a,

>

' R -1f Sl
(3.8) o° = = tr % o J! % a, J c .
To\ko Bk e AR

The second partial derivatives of (2/N) log I, are

* 2 : % . q -
5-9) 5 ey ﬁlog“?tr(k:()“k{k Tl b I

ingl"“!qs
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3° 2 2 -1 -1
(3.10) —% [ log L=~ 7tr % a, J C § a, I\ J! % Jat o,
B, 30> N o g20 X A ~lg=o A E) ~dig=o R A
J =1, ... , q,
2 -1 -1
d 2 T 2
(3.11)-—-——1ogL=T—Ttr( % J) % o, J C .
3(0°)° N o o k=0 ok I ¥

The information matrix has elements which are N times

( ) 32 1 ( =1 -1
3.12 - == — T log L = tr § o J J, % O, J J,
g Bai aaj N koo &~k ~1 (£=O L ~2) ~J
% -1 % -1
+ tr J J, J! o, J¢ R
(1<=00Lk *k\) ~i gz R
1’3_1> cee 5 G
2 -1
(3.13) - ———é——E- %—1og L= l§-tr J!( § oy Ji s, J=1, «vo 5 a4, .
8aj o0 o Y \=0 h
2 -
s 9 1 T
(3.14) -f——— =1logl = .
#)E(Ozfa N > o

As N » o , the maximum likelihood estimates have a limiting normal distribution

with covariance matrix whose inverse has elements given by (3.12), (3.13), and
(3.14).

The likelihood equations (3.7) and (3.8) cannot in general be solved expli-

citly. However, the method of scoring can be used. If L(y|6) is the likelihood

~ 0 o~

function of a vector parameter 6 , the Taylor's expansion of the (vector)

~

derivative is

(3.15) gg-log L(XIQ) =

~

log L(yle) 0-

[ e>]

*) + R(y|o,0%) .

Q2
tasd [ ¥



—

———

B

U
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The matrix (32/38 90') log L (yle) will be close to its expected value,
vhich is a function of 6 , taken to be the "true" value of the parameter

vector. Under certain conditions if 6¥ is a consistent estimate of the

"true" value, the solution to

aglog L(Xlg) 3 .
(3.16) - 350 (6-6%) = 35 108 L(y|e)

p=0%

is a consistent, asymptotically efficient and asymptotically normal estimate
of ©. The procedure can be iterated; in suitable circumstances the seguence
of vectors will converge to the maximum likelihood estimate, that is, a solu-

tion to the left-hand side of (3.15) set equal to O .

~

In the present case let a(o), 500 o &(O), 85 be a set of initial esti-

~ (1 ~{1) =2
mates, and let a{ ), 500 g aq ), Oi

be the solution to the i-th set of

equations. It will be convenient to let

(3.17) A= ¥ oD
~1=-1 k=0 ~K

Then the i-th iteration involves the equations

q
(3.18) tr AL g AT 1 I+ tr AL y AL A1) ~(i-1)
jz b ~g ~1-1 < .r ~i=1 {g {J él—l J j

- l ~ Y l A'_l
- tr A J +
~i-1 Lg 82- kS él—l g éi—l ~g él—l i
i-1

g =1, . . q ,



~2 L 3 J ~L i -1
o;_q -d= 205 1
=T +—2 AT AT o
2A2 284 ~i-l “i-l X
Oi1 i-1

These reduce to

-1 N (1) e ~-1 ~2
t ;
(3.20) jili}r I Iy o+t B {g b él—l] g YT ML Je %

aly 1 T T R . G
R K T =2 tr él—l Chadegbia - whadba %
el
T N S T =1, ... , q
Y1 9 do A4 o 5 ,
q 1 A
(3.21) tr ATT @), T g2
Ay ~l—l J 2,(} 1
J i-1
= P o4t AT A - otr ﬁ L
a2 ~i-1 <i —l ~ -1 .0
25"
i-1

If 02 = 1 and % is a free parameter (not specified), the likelihood
satisfies (3.3) with o = 1, the first partial derivatives are (3.5) for
j=0,1, ... , @ , the elements of the information matrix are N +times (3.12)

for i, =0, 1, ... , ¢ ., and the equations for scoring are

(3.22) % tr A7 g A I, + tr A] - 7, J} A=) (l) - ql-1)

T B
tr A7 -1 s AL oA Jg 4501 »



e

e

[

Mttt
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These reduce to

~=l ~e -1 =1 ~(1)
. + : :
(3.23) 32 ichs él—-l {g A —l 'IJ s él—-l {g 'IJ él—l OLJ
A=l =1 ~=1
= + J ! :
tr AL g v KT CAT O AT
g=0,1, .. s 4

3.2 Moving Average Process Approximated by a Linear Transformation.

The moving average process {yt} is (1.1) for 81 = ... = Bq = 0 , that is,
(3.24) v, = % A, Vi o s

t j=O J —'J
t=... , -1, 0,1, ... . Then the distribution of Yio =e+ 5 Vo is

approximated by the distribution of y defined by (3.1) when Iy = IS

~

g=0,1, ... , g . The components of (3.1) are
t-1
(325) y, = Q, Vi . » t=1,.. » Q4 >
t j=0 J t—J
(3.26) V. = % o, v , t =g+, ... , T.
t j=0 J t»j

The equations (3.26) correspond to a moving average process; the moving
averages of the first q observations, represented by (3.25), are truncated.
The covariance matrix of the moving average process defiﬁed by (3.24) is
(3.27) % o° o° I + % qil G o, o (Li + L'i).
J=0 d ~ 1=1 3=0 J*o~ o~
This is of the form considered in T. W. Anderson (1969), (1970), (1971b), and

(1973), namely
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(3-28) 2 Ug (:J,g s
g=0
where GO = 1 and
1)
(3.29) G, = P+, g=1, ... ,q
The covariance matrix of ¥y, ... , ¥y defined by (3.25) anda (3.26) is
for q = 2 , for example,
a2 o 0 0
0 “o% OO
2 4 o8 + 0
%o Ggr Gy Oy = %8> %%
oAC, o0, + O,0, a2 + 2 + ug OO + O, 0O et 0
. g2 %L T X% G T O ¥ Oy OG0y F 090,
(3.30)0
0 o0 o0, + 0.0 a2 + u2 + a2 . 0
o%2 of1 T %K% Y% T H T &
2 2
0 0 O - (4] .3 GO + ul -

This matrix differs from (3.27) for ¢ = 2 in the upper left~hand 2 x 2
submatrix in (3.30). If T is large relative to q +the difference between
the two models will not be important; the model (3.1) with gj = gj can bhe
considered as an approximation to the moving average process.

When J. = LY ,
~J ot

]
i_l
°
.
.
-
flal

g -1 q 9 ~1 3
(3.31) tr (22 oy gl J. = br (22 Oy L ) LY =0,

-1
: - X
(3.32) iy ? a, Iy Jg = tr ( ;}1 a, U ) .

;ﬂwn/
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The likelihood eguations (3.7) and (3.8) for Ups vve s

(with a = 1) are
~ _l ~ _l ~ ] _l .
(3.33) a, L = % a, X C % o, LY=0, g=1,
N PR g ¥

q -1
A2 l ~ 1] % ~ QI
(3.34) o T tr z o L oo a, L } c

The method of scoring leads to

(3.35) % tr A75 18109 4t (\aﬁ) - &(i‘”)

5=1 i-1 ~ ~ ~i=117J J
- 1 1 & 3 -1 -
= tr é -1 9 él—l % él—l > &= 1,
a,
i-1
N\ ~ R AV A
(3.36) —g— | -F J=-—F—+—— i T c.
oG i i-1 282 26 ~1-1l i-l ~
i-1 i-1 i-1
These can be written
g '3 art=L afi) _ Acl g A=l
(3.37) i tr A7 il L LT Ay -t A, DA
1 Acl A=l 'goa'-l
g A CA LAy
o,
i-1
g=1, >
~2 |
(3.38) 9; = tr él—l él—l C -
: . . ~(1) ~(1)
The set of linear equations (3.37) are solved for o , o,

1 0 e .

2 = 1), then the likelihood

If the parameters are Oys Ogs eev s uq (o

equations are (3.33) for g=0, 1, ... , g . The equations for scoring are

b
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D a1l A1) fA(D) ~(1-1)
(3.39) (tr éi—l + tr % Y ~l_l)(ao = ao )

~1—1 J

% tr ﬁfl p'd At (a( i) _ &(i—l))
=] Gl AL e Jd

) ol A2
=-trA ) +trA ~1-_1 S

ALl g ' o=l Aa(d) A(d-1) -1 'g A'-1
. tr A . T - L8 4,
(3.40) % i Al«l I L* A aJ aj = tr él—l ¢ él-l B R

g=1y ... 5 q .
These reduce to

A AT N E A ty At N
(3.41) (tr A2+ tr AN A })a(l) + % tr A75 LY A agl)

-1 -1~ L 12 Bie
= tr A2 &(i‘l) +tr AT ¢ K'—2
~1-1 70 ~i-1 < Zi-1
(3.42) % A fpY AT 3§i) = KL o BT LEAT
g=1, ... , 4.

These form a set of g + 1 linear equations in gq + 1 unknowns.

If N=1 and Y. =Y - then C = yy' and

~ ~ ~

Al /\l_l |g /\'_l . Al_l lg Al -] = =1 =0
5 . . ; = = | .
(3 43) 5 él—l 9 él—l % él—l g él—l E él—l él—l g2 & e 0%

The equations (3.37) and (3.38) are then

g at
! A(i) = (é—l—l y ~l—l L lé]‘_—ly\:)

-1

S
él—l N

(3.44) % tr AT L8
i=—1 <
J=1




ol M

Y-SR PV L LR |
(3.45) o3 = T|Xa 2’) 21 Y -
The calculation of Kgil y can be done by solving
(3.46) ) &él'l) z=y

2=0

The matrix of coefficients has the form (2.38) (with BZ replaced by

&él—l), 2=1, ... , ). The component equaticns are 2] =¥ >
t-1
T o~(i-1) = s
(3.47) 2, * szl 0 Zy_g = Vi s t=2, ... , 4,
) % 5{i-1) - .
(3.48) z, *+ L o 2, o=V > t=a¥l, ..., T
These can be solved successively for 22, cee s Zm Each component Zy

involves at most q multiplications and the entire solution less than qT

multiplications.
The first column of A;il can be obtained by solving (3.46) with ¥y
replaced by the first column of I. Thus z, = 1 and the successive cal-

culations are

t-1

A ‘__l
(3.49) 2, == ) o) g | T R
=1
~i-1
(3-50) Z_t = - szl OLS ) Zt—s s t = q_+l, s T .
The {(j+1)-th column of ﬁ;il is simply 1 times the first column; that g

it is the first column displaced by J wnits for



Zq 0]
1 :
.51 L . '
(35) o . = Z_]_ s J=1, ...,T-—l,

T-]
(3.52) 19 z=0, 3 =T, T+1,
Thus the calculation of K;il 1% involves less than Tq multiplications.
Another way of looking at the calculation of (ZE=O a, LQ)—l , Where
we drop the carat and superscript on &él—l) for convenience is to see that
q T-1
(3.53) 1= 3 ot ] s 1
e L ~ .k J ~
2=0 j=0
T-1
+
=§ 1 a8 Mt
2=0 3=0 ~
T-1 :
= 3 Otg'(S.L
150 Q+j=i J -
because L' =0 for i =T, T+l, ... if 85 =1,
(3.5h) 4y 85 =1,
i
(3.55) Y a 8, o =0, i=1, ..., a1,
2=0
(3.56) % oy Gi—l =0, i=gq, qgtl, ...
2=0
The coefficients 50, 61, ... satisfy the homogeneous linear difference
equation (3.56) with g boundary conditions (3.54) and (3.55). Therefore

IS ’ — i LS
(37)7) , Gi = Qzl kl Zy o i=0,1, .. ,
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where zl, 5 zq are the roots of the associated polynomial equation
q

(3.58) y oy A% =0,
2=0

and kl’ e s kq are determined so (3.57) satisfies the boundary con-—

ditions (3.54) and (3.55). [The form (3.58) is on the basis that the g
roots are different.] Then the inverse is

q ) -1
(3.59) ( z a, L =

8

i _ T
6 L= 1 &L

[~

=0 i=0

It may be observed that (3.54), (3.55), and‘(3.56) are identical to (39)
and (40) of Section 5.2 of T. W. Anderson (197la) with -gj replaced by o5

correspond to

and p replaced by q . Thus the coefficients 60, 61,

the moving average representation of an autoregressive process with coefficients

1, 0y een s O
Then
] T- . s .
(3.60) Voo, 1t k- Zl 6 T = % " L
/Q,=O 2 ~ ~ .=O S = i~
vecause L'F =0 ir ik > 7T .

~

The coefficient of aél) in the j-th equation of (3.44) has the form

-1, ! =l
(3.61) tr % o it ISR % o, L ¥
g=0 ~ | v g0 E -
Tel-j T-l-k
_ +5 itk .
= tr 20 'Eo Gg 6i Eg J L . . Jo k=1, ... , g .
g: l=

X h _'2
A matrix L % has all elements O except along the diagonal h - &

entries below the main diagonal, which consists of 1's and O's . 1In

. h _'%
particular, L L has only O's on the main diagonal if h # 2 , and

h.'h
L™ L has 1's on the main diagonal except for that first h entries

being 0. Hence
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?
(3.62) tr 12 Y=0, h# 2%,
o
(3.63) trt® 1 ®=th, n=0,1,..,T1 ,
?
(3.64) tr ~h L h'_ o, ho=T, T+l, ... .

Thus (3.61) is

(3.65) o] ] )
2= 2=0
T-1 - max(j,k)
= izo [T-i- max(j,k)] 61+|k_j|6i
Note that
(3.66) 2

° Lo Surpeeg] 0 7 oD

where OAR(k—j) is the (k-j)-th covariance of the autoregressive process
corresponding to the coefficients 1, Oys =v s aq and variance 02 . Thus
(3.65) is approximately T OAR(k—j)/U2 , especially if the roots of (3.58)

are small and thus the series (3.66) converges rapidly. In particular

q -1 . ' q 1, )L (¢ (k—j)
(3.67) 1lim = tr Y o I Y oa L 2 =;A§;2__

Too © \g20 %~ = =0 =~ o

There are various ways of calculating GAR(h) given Ops oot > aq and 02
[See Section 5.2 of T. W. Anderson (197la), for example.]

The equations (3.44) are approximately

(3.68) 21 8§§‘1)(k—j) aéi) =q , 4 =15 t.. s q %

where
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T
o
¢
=
1]
O
P

~(i-1)

[

The ¢q X q matrix whose elements are QAR (k-j) are the covariances of an

autoregressive process of order gq , whose ccefficients are 1, &il_l),..

Then the solution to (3.68) is

. ~(1i) o
(3.70) = £, d,
ak jzl kj J

-1

*9

&éi—l)

where (f .) = [GAR(k—j)] . The elements f, ., are the coefficients of the

kJ kJ

quadratic form of v,, ... , vq having a normal distribution with covariance

matrix [3&{‘1)(1:-3)]. The matrix is

~(i-1)
1 all 5
Afl3 . 2
(i-1) 1+ &il—l)
. &éi—l) &il—l) + &él—l)&](_i—l)

(3.71)

Q

i-1

\ &éi—l)

The matrix is persymmetric; that is, it is symmetric about the transverse

diagonal. If g is odd the middle term is
. 2 . 2
~2 ~(i-1) ~(i-1)
3.72 0. 1+ +

The matrix is essentially derived in Section 6.2 of T. W. Anderson (1971).

It can further be shown that

0
211 ]
(3.73) 1im %—tr % a ¥ J 'k ? o ' = J cos AJ cos Ak an

2=0 2,:0 =T f (X )
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L.

Estimation of Coefficients of Linear Transformations When a Covariance

Mgtrix Has Linear Structure; Autoregressive Processes with Moving Average

Residuals.
Let

p ~
(h.1) z By Ko ¥ = u
IR -

where ﬁ;u =0 and

(4.2) G(u) = guu = o, G,
~ g ~&
g—
GO’ Gl’ 500 i Gq are g + 1 known linearly independent symmetriec T x T

a
matrices and GO, 5] ¢ are q + 1 parameters such that 2g=0 Gg gg

10+ 2 9

is positive definite. Then 'y has mean vector 5 y = 0 and covariance matrix

il
(+.3) C}(g)=(éo'82§2 gi G, E

k=0

~

with inverse

(L.4) "1(y) % By Ky k % o Gg -1 QEO 8, %,

, -1
=§ B, K %GG K, -
X, =0 P Be g=0 & "8

We assume 80 =

If u is normally distributed, then 2/N times the logarithm of the

likelihood is

2 = § - % G
(4.5) 5 log L = - T log 2T + 2 log ] ) Bg EQ] log | L Gg P
2=0 g=0
§ d N
- tr B % oG B K, C
K,i=0 E ~E\go &8 At~

The partial derivatives are
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(4.6) —2o- glogL=—tr(% 5. G )-le
90, N e=0 & -B £
+trI§%{K'%GG-lG czloG—lIZ)BKC
k=0 © “FlgZo 8 8] ~Tl.25 &gl Lty el
f=0,1, a ,
5.T) 5 Brogr-2t| ) & g | “2tc ) IR
B, W18 Lo e B K < ko P K o e el Koo
=1, > P .
In case gk = %k , k=0, 1, s P, N=1, and X(k) = %k X , the
derivative equations are
a -1 P L mf e . -1 Qa -1
(4.8) tr(gzo O gg) gfzkg,%:o B B, v ) ng—-O og Gg) G g-Z_-o g, G Z(;a)
f=0,1, , Q.
ooy § y<k>v(§ -\ y(z)ék=_y(0)'(§ s L
k=1 ~ g=0 &-~g| ~ ~ \e=0 & ~&] ~
g =1, > P
The second partial derivatives of (2/n) log L are
) 32 5 . q -1 q -1
(k.10) 33;—§€: 7 log L = tr (gzo oé Qg Co gz Oy Qg) Gy,
p [ Q -1 q -1
-2 tr 20 PkKNk(gzz % (ig) e (g__;o % %
q -1 p _
Gy, gzo I gg QZO BQ K 9 ’
f, h=20, 1, > Q4 ,
2 P I -1 q -1
(k.11) 55;%; %log L=24%r k-_zo kask (gzo Og‘(ig) (Ef(gZO Og (.},g ISR,
f=0,1, s 4 L =1, s D
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2
(4.12) 2

-1

t

—2trCK,(%oG X, .
~ =% g=0 & ~8 ~%

The information matrix has elements that are N times

2
_¢ o 1 _
(k.13) }& 30, 30, N log L =

o=

g=0

- o \-1 s 1
(bL.15) - W ﬁ‘log L = ' tr(kZo Bk 5{) &(kzo Bk 5{) A

-1 -1
* t'( SLEO BSL IEJL) gzo Cyg gg(ﬁo BSL ISJ'L) ISS'L'(

Let

(1.16) 5= § Rl
~i-1 220 2 ~%

The method of scoring leads to the following iterative procedure:

q A A - N Al
(4.17) hzo er (5 )76 (5 D7he, \cﬁl) - &yt l))

-1 X .
“u NERNPNeY A(1-1>)
-2 221 tr G, (27 ;) Ky By (Bg - By

Y

= su )1 ou -l su 1 3
Bl U 1 Za) TG G T B

~q
+
~i-1 ~T tr ?i—

5 _ ) ‘ﬁ -1 P , -1
e e B

§ -1 % -1
tr o G G o G
g ~8 ~f g=0 &~

C

~

9

8!

>
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(k.18)

au -1 -1 | A1) a(i-1)
- e hzo br Gy (8 )7 Ky By (Oh ~ %

0= ~di=l
= a—1 Al su "l
2r By Ky -2 OB, (3 ,)

These equations are equivalent to

4 A = au (-1 ~(1)
(4.19) hzotr (z; )76, (B )76 0

= - —l Al &l
2 tr G, (E) )7 + tr Bl y (24
au -1 ~=1
T2 tr G, (Ei_l) Ko Bi1

Q_ ~. A A3
(h.20) -2 ) tra (30 )7k BT )

)" K., B, . O
h':O ~l“l ~J ~1—l ~h
+ 2 E tr B. K, B, K, . + tr B.
,Qr.—"l[ . ~1-1 &3 ~l=1 ~2 ~l=1

= =1 A! ou
botr B. 1 Ej -2trCB , (Ei_l
A A AV _ A -
2 tr B ER B TR (B2 )

~l-1 ~i-l Ji-1 N0 CNi-l

[
o

i
i

3 Al |
LY , then +tr gi—l 55 tr gi—l

(h21) -2 § tro (5% )7Ll 3L o)
h=0 ~] ~i=-1 ~ ~i=1 "h

e ~Y_ ' A
s2 Vo B, oin, Bt
=1 ~ i -

™M

. A' Au _l j
2tr € B!, (27 ,) LY -2+tr

p ' : . .
a—1 A—] A—]1 fay vl At-] ' »U -1 A ( 1 ) A ( i-1 )
vz Zl[tr B Ky B K e By By B Ky () IEJJ( F)

I-Sj b j = l b E p
au -1 . a-l
-2 -§ tr G, (E0 )7 K, B]
9=1 ~f TLi-l ~R Li-l
_l ~11 _l A
V) G (B )T B ¢
f = 0 b l bl bl q b

A9 A'_l .
Lol K

)—l K. -2 tr
~J

lK_, j:

~dJ

~i-1 ~j

(8 ) K] Bt

A=l ~1
K
Bi1 =y §1_1 ~0

e o

18 = 0 . Then (4.20) is

~

oyl o3 gld)

i-1 ~ %

BT, I B

l Au Al_l (Au )“l .
~i-1 ~i-1 <i-1 ‘il

L,

R o T

~

2

(1)
2



. . ~(1) ~(i) ~(1) (1) ~(1)
The matrix of coefficients of OO > 07 s > Oq . Bl T Bp is
fu -l u -1 L qu -1 g oAl
tr (7 )7 6, (B7 )7 ¢y 24w Gp (23 5) LB
(h.22)
- su -1 g o-l R T A B RN R
2t G (2 ) 1) B Bl Bt By

If C =yy' , the right-hand side of (4.21) is

~ ~~

b.2% - gu =1 13
(4.23) 2 (8 .y @ )Ty,

and the quadratic form on the right-hand side of (4.19) is

! ~ Yeau o y-1 au -1
(b v2h) By ¥) () G (2 ,)

>

51 9

u o, . . .
When I is to represent the covariance matrix of a moving average process,

Go=1.
]

(k.25) G =+ L E, g=1, .0 a,
and

a-g

2
(lk.26) o =g 2 o, O. R g=1, ... , q .

Iy | +

g 3 ite

' —
Since L8 L . is 18 . , h < g, except for at most h 1's being replaced

~

~ At 1
by O's , Ziu—l and Bi__l L almost commute and the lower right-hand corner
of (4.22) is approximately
AV 1 A
(4.27) o tr BT 1'% ¢d gt

~i-l ~ ~ ~i=1
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5. Estimation of Coefficients of Linear Transformation; Autoregressive

Processes with Moving Average Residuals

Here we combine Sections 2 and 3. Let

P q
(5.1) LBt LA n v
where %O’ %l’ S Kp are p + 1 known linearly independent T x T
matrices, {O’ {l""’ {q are g + 1 known linearly independent matrices,
BO =0, =1, Bl’ e Qp s Os ven uq are p + ¢ parameters, and v
is a T-component random vector with mean vector S§C==Q and covariance
matrix ¢(\£) S 02 I . Then
(5.2) zﬁ) By Isg)‘l L og

2=0 k=0

has mean vector 0 and covariance matrix

oo =23 sl 3 an ] u]

=1
. Bxp| = e taa gt
=0 2=0

h = )4 : = P
vhere L= beog Oy i @nd B = lp g By Ky
it Y3> =-+ » ¥y are N observations on y with a normal distribution,

2/N times the logarithm of the likelihood function I is

) o 7 |

2
(5.4) wlog L= - T log 27 - T log F + 2 log I % B, K | - 2 log |
N 2 28
2=0 ) k=0

~ tr = }i B BK'{%OJ')_.iuJ‘_lKC
il ' - . °
o ar,dmo MR Sy B R [pop kR R] MR

The partial derivatives are
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(5.5) =2~ S10g L= -2 tr % J flJ
3 g R g

2 li %— -1 % -1 [a -1
t == tr B, B Q. K. CK?, Iy J! Jy
0_2 Q,,Q,'=O 278 k=0 K.k ~B~af k=000k~k ~E kzou’kvk
=-2tr A+ & e ateeea Toa' T, g=1, ..., a0,
~ ~8 o e ~En~
-1
(5.6) i g-log L=2+tr § B K B
38, W Lo P ) T
o) IR IEEAR
S 8 K! J! I\ x
2 ko T ally %k k) L L) % k) n
=) 2 G
cew g - Gur ATt e, w1,
3 2 T 1 g = -1
(5-7) — FlogL =« —F&+ tr § B ' B, K!, 2 J) d Ko C
ac® N R TR LR 4 P B P
T 1 - ]
SET A ECR A

The maximum likelihood estimates are defined by setting the derivatives equal
to O.
The second partial derivatives of (2/N) log L are

2

3 2 ) -1 -1 2.4 -1 I |
(5.8) 55 3a. § logl=2trA " J AT J. -—5trATJ AT BCB AT JA
g T o
— '__ '_ '_
_e srat o atgratg 't
2 ~ ~ o~~~ ~T~ ~g ~
(0]
— '_ '_ '_
2 trateepatgra ot
02 = = ~g ~ ~T <
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2 1 1
) 2 2 -1 1 -1 o -1
2 SNy FN A A
(5.9) 0. 9B N log L 2 tr é Eh 9 E ~ {g ~
g h o}
2) =) = -1
+<trATJ ATK CB' A 5
-2 ~ ~Z~ b i~ <
g=1, ... 4, h=
(5.10) 22 2 logL = - 2 tr BL K, B 2_ppxr At
2 58 9g. N io8 b= - R e
h J o]
h, j =
32 2 2 -1 U] Gy
(5.11) 5 ylogL=--trA” BCB' A J'A , 8 =
200 90 (o] - -t - B ~
g
52 2 2 -1 1
(5.12) s Tlogl=Sptr A K CB A7, h =
BBh ple] o) R
32 p T 2 -1 ra)
(5.13) 55 glogal=-p -“gtr A BCB A .
3(0°) o o oo r
The elements of the information matrix are N times
(5.14) - E’—»—ffl—— Z1ogL=trat I a7t a +traty gra
: : aug auf N o8 - 8~ f - g °f
g, £ =
(5.15) —‘g~——ifi—- LiogL=-trd' A 2atyx Bl aActryg
: oo 0B, T g PR R e
g=1, ... ,a,h=
(5.16) 2 L =tr BT K, B vop Lt
. - e = = 4 + K
Eashagjmog rEok,BUE KA A
h, j=

-1

H
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2 '
(5-17) ‘& a P) %lOgL='J;é'trJ'é ls g=ls ree 5 G,
9a 30 o ~8
82 -1
(5.18)-9{’ 5 ylogLh=-=FtrK B, h=1, ... , p ,
9B, 90 o
h
2
9 1 ay
(5.19) - § Liogn =2 .

The method of scoring can be developed from these results.

If Jg = Eg = %g » then the elements of the information matrix are N times
? 82 1 -1 .g.'f '-1
(5.20) _%WﬁlogL;—tr% L= L "~ A ) g, f=1, ... , a,
g £
' 32 1 _ -1 .h -1 g -1
(5.21) —g————aaga%NlogL——té L"B - AL®A R

1}

‘.—i.
t R vs)
=
=
tvs!
[ -l

2
(5.22) - !_,__a____ S lop L= A
Easj 3B, W S

-2
(5.23)-¢—a——-2- ij\i—logL=O, g=1, ... , 4 ,
aag 90
(5.21#)—5——-—8——2—1%logL=0, n=1, ... , p -
BBh 90

Note that I:g, €=0,1, ... , A, B, AT

P2

, and Bl are polynomials

in L and hence commute. Thus (5.21) and (5.22) are

~
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3 1 _ h -1 .'g ,'-1

(5.25) % 9, ¥ log L=-trL B~ L®A ,
g = 1, ... a3, h=1, > P s

32 '-1 '3 -h -1

(5.26) - S8 op. N log L = tr B LYL" B~ , h,j=1, )
h 7
When J = Kg =18 , then the method of scoring involves the solution of
l AT _ NE

(5.27) % er A7 £l g4

_1 ~ 2 ~i=1 f

_ E b I 'g A -1 Lh -1 @(i)

= -1 -1 h
1 oy A A~ At l g At -1 g I\'_l
= t ' -
02 r é i=1 ~1—]_ g ?1—1 él—l % él—l + tr % -1 E (gl—l él—l)
i-1
g = l’ LG 2 q 2
(5.28) % R N AL NN CY
f= ~i-1 =~ ~1=1 £
Al 1 A »
+ § tr B, 719 g7t gl
=L it opdes AL tr (A, T - B.7%y 1 371
’ A, . . r . -
0?_1 ~lel o L Ji-1 Uil i=1 ? —l) % ?i—l ?

A2 l l A A A'_
(5.2 o- = ! l
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i

If N=1,y, =y, and C=yy , the right-hand sides of (5.27), (5.28),

~

and (5.29) are, respectively,
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6. Asymptotic Theory

The exact distributions of the maximum likelihood estimates developed
in this paper cannot be obtained in closed form in general. However, asymptotic
distributions can be found. If N - o« we have the case of repeated observations
on the random vector Y s in the case of time series, however, N may be 1 and
T + o . In either case when consistent estimates of the parameters are used as
initial estimates, the estimates obtained in the first step of the iteration pro-
cedu;e are consistent, asymptotically normal, and asymptotically efficient (when
normalized by VN or T , as the case may be).

In the model of Section 2.1 no iteration is involved and the asymptotic
properties are the usual ones as the number of observations N increases. The
model of Section 2.2 is the autoregressive model with the first p observations

treated as fixed (y R 0) ; the asymptotic theory as T + « isg

_p+l =
well known. [See T. W. Anderson (1971), Section 5.5, for example. ]
For each of the models in the other sections [as well as the model

g=0 “g ~g

was proposed. If the initial estimates are consistent, the matrix of coefficients

=32 6 G treated in T. W. Anderson (1971b), (1973)] an iterative procedure

of the linear equations is a consistent estimate of the information matrix.of one
observation. The asymptotic distribution of the right-hand sides is normal with
covariance matrix equgl to this matrix. It then follows that the estimates have the
stated properties. We shall carry out the details of the proof only for the

model of Section 3.2, which shows the pattern.

Let y = ( I yT) be defined by
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We shall let T = o . We assume that the roots of (3.58) are less than 1

in absolute value. Then (3.4h) and (3.45) for i =1 are

q t s A ] A ~ ~ At
A - G A N LE I R N AL A R S -1 g ~'-1
(6.2) '21 tr By TP LT Ay O 2 Lo %o L% ¥ trhy LT Ay :
9= 0
g =1, » 4
- RN R B R
(6.3) O =TFY 4 A T -
We shall show that
A ts At _ - ts T
(6.4) plim '%—tr Aol 81 A, S i %—tr Al 1834t
T—>co ~ T ~ Torco - o -
The right-hand side is given by (3.67). The left-hand side is
T-1 - max j . . N A
(6 5) a (gaJ) l:]_ i + max(gh]) ] (SO 69 ]
=0 B ir]i-gl "1 _
where 68 =1 , Gg, i=1, ... , constitute the solutions to (3.55) and (3.56)
with oy replaced by &2 s =1, ... , 4 . With arbitrarily high probability
&O, 000 o aO are such that the roots of the polynomial equation with these
1 a poly

coefficients are less than 1 in absolute value, in fact, are less than .p < 1
for some p [greater than the largest root of (3.58)]. Then (6.5) converges
in probability to

0
(6.6) s

0 i+|g—j|6i 2

) OAR(g-j)

.

1

We can write (6.2) as
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e et

6.0 § Eeast frd TG o
j:

1 1, -1

~o
il o,

e
2
O

0 -~ <0 = ~0 i

We want to show that the right-hand sides have a limiting normal distribution

with means 0 and covariance matrix (6.4).

Consider
1 o = - =
(6.8) = yu At Ifaty = oy a8y
mE TR TR ITLEET R U
e .
=26i}/;—2 V'L1+gV
=0 o~ T T -

. T-{i+g)
= f & l2 ) Ve Vigieg °
i=0 JTo™  t=1 g

T T ' o
For any n the set (l/ff)2t=l v, vt+l,...,(l//Tth=l Vi Vien have a limiting

normal distribution [Theorem T7.7.6 of T. W. Anderson (1971la), for example]

with means 0 and covariances

S T
1 1 & 2
(6.9) = ﬁ YV, V. V.V == ) VLV, W
T t,5=1 t t+j s 's+h T - t t+j tth
i
=0 , J=h=1, s
=0, J#n.
Then the set
n-q T
1
(6.10 §, == =1, ...
) izo i @_02 tzl V_t V‘t+i+g s g s > @

s

has a limiting normel distribution with means O and covariances
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Vi Viritg Vs Vs+i+h

n-q—%g—h|

i=0

9 6i+|g—h| :

which has the 1limit as n - « of (6.6). That the limiting distribution of
(6.8) is the limit as n + ®© of the limiting distribution of (6.10) is jus—

tified by Corollary T.7.1 of T. W. Anderson (1971a), for example. Note that

i) £ 5 s

2
. ) v, vV, . ) 8. .
i=niqtl T /@0t 4= totHte

. T—(1+g) 2 Teg-] oo .
1 f 2 <
1 F— i

T i=n-q+l i=n-g+l

Now consider the difference of (6.8) and (6.7), which is

'__ A A A AL
1Al 18 AOl Av+trAt18ar :ﬂ

(6.13) - _lvl A_l 18 v -
02 - - 0 0

v' A' R
S = ~ o~

We write *
(6.14) A=A -A

Then (6.13) is
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45
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ol A~ Ay (Ag-A)A T )Av
0 .
+ tr (A1oA (A -A)AT LgA'(A 1- (A —A) A, -1y
=._2'.. ..l‘.._::lé_ 'A LgV"';—V (A _A)AOlA—ngv
/T 02 02 ~oT T
‘ % 0
+ Aé Ol(A -8y + 2 v AT A (A A -t AT Y8R, At
% %
- ;%-v (A —A)'A l“'l(A —A)A” Lgv - ——2—v (A —A)'A —1y ngAOl (R -a)v
00 00 :
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<5 V'hAg By U
G
0
+ %‘-v (A —A)'A -1 'l(AO-A)A 1ren l(A -A)v

~All,N =il g A ‘A|_
+r Ay {Ag-A)ATL (A -A)'A,

The first term on the right-hand side of (6.15) has probability limit O because

N\

(6.8) has a limiting normsl distribution and p limp, Gg = 02 > 0.

Each of the
third and fourth terms are
1 1 ~(0) ~ 20 1 gri+i+k
(6.126) =y 'AO Lg(A—A)A v=;§§ (o " 7~ay ) N -aid.—-—vL 1+
o /‘f~~" of k=1 i,j=0 4 A ~
0 0
Let
e .
(6.17) Moo= 1 6 =v iy
j=0 T T
Then
; Lo o]
(6.18) g, <o 1 6

We can write
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o [ee]
. 0 1 g+h+1+j 0
(6.19) ) 8 8, =v'L z O W_ o
S S k+1,T
ig=0 1 9/ j=o 1 BT,
With arbitrarily high probability IG;O | < pé for some Po such that

0 < Py < p. <1 . Then the square of (6.19) is less than

1
. o %O 2
(6.20) .z -gf z pl W§+k+1 T
i=0 Py

© 2 2
Since the expected value of the second sum is less than Guz. =0 6./(l—pl),

(6.20) is bounded in probability. Since p limp, &é = 0y (6.16) has

probability limit O . The second term and fifth term give

~ PN - ~ AV _ -
(6.21) ;—é— Ly (aoa) i DAty o Lor (A-a) i 1yl e
S yr~oo RO ~ ~
1 ~(0) o 0 1 e+i g+ k+1 g+j
= = (qk - Qk) ) Gi o ‘—'(V' L Jv —o° tr L L
oy k=1 i,j=0 i ~
v ~2 Tk+i +3
L3 é) 8, (c® - o5) tr L K+l gt
YT i,3=0 ~ ~

The sum of 6j times the first parenthesis is treated like (6.17); note that
the parenthesis has mean 0 and (6.18) as a bound on the expected value of
its square. The same argument carries through. If vTIBQ—Gg) is bounded in
probebility [or ﬁf(&éo)— dk) is], then the second term converges to O in

probability. The other terms in (6.15) are treated similarly.

It follows from these results that the solutions to (6.7), namely
~T
/T(ai )—al), e Vm(uél) aq) have a limiting normal distribution with

means O and a covariance matrix that is the inverse of the information matrix.

The sample covariances c, defined for (2.48) are consistent estimates of

h
g(h), h=0, 1, ... » pta . From these can be obtained consistent estimates of
81, SR Qp A ou(o), vee Gu(q) and of el, cve BP > Oy 5 aq , and

62 as described in Section 5.8.1.
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